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1. 

In the theory of linear viscoelasticity, one of the hereditary models [1–3] is a
constitutive law of the form (a one-dimensional element is taken as an illustration)

s(t)=E0e(t)−g
t

0

G(t− t)e(t) dt1,
which can be written in operator form as

s=E	 e,

and

E	 ( · )=E$1( · )−g
t

0

G(t− t)( · ) dt%. (1)

The scalar function G(t− t) is called the relaxation kernel and E is the
instantaneous (or elastic) Young’s modulus. The quantity E	 will be called Young
modulus operator. One can introduce a similar representation of the Poisson ratio
operator [2]:

ñ( · )= n$1( · )+g
t

0

L(t− t)( · ) dt%, (2)

where the quantity n is called instantaneous (or elastic) Poisson’s ratio.
Application of the finite element method to elastic systems allows the

formulation of dynamic problems in terms of mass and stiffness matrices; vectors
of displacement (response) and force (excitation). For viscoelastic systems, E
(Young’s modulus) and n (Poisson’s ratio) should be replaced by their hereditary
analogs (operators). In the case of the finite element method, this implies the
replacement of the material constants E, n in the stiffness matrix by their
viscoelastic analogs (operators) E	 , ñ.
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In the present paper, a viscoelastic structure is assumed to consist of isotropic
homogeneous hereditary materials and the materials are assumed to be in an
isothermal state. The principal equations to be used are: (1) the constitutive
relation between stress and strain of the material and (2) the equation of motion
of the structure.

Finite element method applications for dynamic viscoelastic systems are usually
described in the literature in the context of time numerical integration schemes,
see for example [4, 5], or are based on numerical inversion algorithms of the
Laplace transformed solution [6, 7]. Descriptions of numerical methods for
Volterra’s equations can be found, e.g., in references [8, 9].

The authors of reference [6] employed a fractional constitutive model and
formulated a method for decoupling the equations of motion of a
multi-degree-of-freedom-system in the Laplace domain. However, in the
constitutive relation just one parameter—shear modulus—was introduced (instead
of two for an isotropic medium), which reduces the universality of the method.
Also, the inverse Laplace transformation of the obtained solution required
significant computational effort.

In one of the widely used models of the constitutive viscoelastic law, the
relaxation kernel is represented by a sum of exponentials (Prony series). This
model is simpler than fractional ones and, as will be shown in the present paper,
assumes analytical homogeneous solutions and, in some cases, analytical forced
responses.

The authors of reference [7] employed a constitutive model with a relaxation
kernel represented by exponentials; however, the model assumed some restrictions
imposed on the coefficients in the exponential series. The Laplace transform
approach was also employed.

A construction of homogeneous analytical solutions to the free vibration
problem has been shown in reference [10] using the Laplace transform method,
where the relaxation kernel was represented by a Prony series without any
restrictions imposed on the coefficients. In references [11, 12], a different approach
(named the ‘‘substitution method’’) was developed to determine the unknown
parameters which are involved in the analytical homogeneous solution. The case
of periodic forced excitation was also covered there.

Homogeneous solutions will be used in this study to construct the forced
vibration response of a structure to an arbitrary excitation. The forced response
representation, using a convolution integral, is well known and used for linear
damped systems. However, there appear to be no reports in the literature which
show use of the convolution integral for the case of a viscoelastic structure, the
equation of motion of which is described by a Volterra (integro-differential) type
equation.

The approach developed in this study allows the forced vibration solution to
be obtained without numerical integration of the equation of motion and without
use of Laplace transforms. In cases when the convolution integral can be evaluated
analytically (it depends on the type of forcing function), the general solution is
completely in analytical form. In other cases, a numerical evaluation of the integral
is required, which would take less computation and provide better accuracy than
the integration of the whole equation of motion.
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2.  

One can begin with the case when the Poisson ratio operator ñ in equation (2)
is elastic, i.e., constant, ñ= n and a viscoelastic structure consists of one
homogeneous material.

Denote by M the mass matrix and by K the elastic stiffness matrix of the
structure. For a homogeneous structure, one can represent the stiffness matrix as

K=EK0, (3)

where E is the instantaneous Young’s modulus. For a viscoelastic structure, it is
necessary to replace E by the viscoelastic operator E	 (see equation (1)). The
relaxation kernel in equation (1) will be assumed as a sum of exponentials:

G(t− t)= s
n

i=1

ai e−ai (t− t). (4)

The equation of forced motion can be written as

MX� +CX� +E	 K0X=F, (5)

where M, C, and K0 are m×m constant matrices, X is a vector function of
displacements and F is a vector of forcing functions. The term CX� takes into
account the presence of viscous damping.

Representing equation (5) in state-space form, one obtains

$C
M

M
0 %$X�X� %+$K0 0

−M%$XX� %−g
t

0

G(t− t)$K0 0
0%$X(t)

X� (t)% dt=$F0%, (6)

where K was defined by equation (3). Introducing notations

Y=$XX� %, D=$C
M

M
0 %, A=−$K0 0

−M%;
B(t− t)=G(t− t)$K0 0

0%, F	 =$F0%,
equation (6) can be rewritten as

DY� =AY+g
t

0

B(t− t)Y(t) dt+F	

and, premultiplying by D−1 one can write

Y� =GY+g
t

0

H(t− t)Y(t) dt+R, (7)
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where G=D−1A, H(t− t)=D−1B(t− t) and R=D−1F	 . Note that

D−1 =$ 0
M−1

M−1

−M−1CM−1%,
therefore,

R=$ 0
M−1F%. (8)

Note that the upper portion of equation (6) repeats equation (5) and the lower
portion is satisfied identically. Therefore, equations (5) and (7) are equivalent and
their solutions (homogeneous and general ones) are essentially the same (they
differ only by the form of the representation).

Now, consider a homogeneous version of equation (7):

Z� =GZ+g
t

0

H(t− t)Z(t) dt. (9)

Introduce the principal matrix solution Z(t), the columns of which are
homogeneous solutions corresponding to the unit initial conditions, i.e., Z(0)= I.
According to a theorem from reference [13], such a matrix exists and is unique.
The columns of Z(t) are linear independent vector functions.

Using another theorem from reference [13], one can represent the solution of
equation (7) in the form

Y(t)=Z(t)X	 (0)+g
t

0

Z(t− t)R(t) dt, (10)

where the initial vector

X	 (0)=$X0

X� 0%. (11)

The only assumption implied in this theorem is that the components of R and H
are continuous or piece-wise continuous functions in [0, a).

Note also that, due to equation (8), only columns of Z(t) associated with the
initial velocities are needed in the integral term of equation (10).

In this study, the columns of Z(t) (homogeneous solutions) will be represented
and used in analytical form. A practical method of their derivation was developed
in references [11, 12] and the principal results from these sources are utilized here.
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The ith column of matrix Z(t) consists of a subvector Zd of displacements and
a subvector Zv of velocities, i.e.,

Zi =$Zd
i

Zv
i%. (12)

The ith independent solution can be represented (see references [11, 12]) as

Zd
i (t)= s

m(n+2)

j=1

cjXj epj t, Zv
i (t)=Z� d

i (t)= s
m(n+2)

j=1

cjXj pj epj t. (13)

Here, Xj is a complex vector (m×1), cj , pj are complex scalars, m is the number
of degrees of freedom (size of matrices, M, C, K ), and n is the number of terms
in the relaxation kernel. Note that in equation (12), Zd constitutes a solution to
the homogeneous case of equation (5). The complex coefficients cj (different for
each ith initial condition) are determined from the system (16) with corresponding
initial conditions, i.e., in such a way that the ith component in X	 (see equation
(11)) equals 1 with all the rest being 0.

The values of pj and Xj are determined as a result of a solution of an eigenvalue
problem. This eigenvalue problem was formulated (see details in references
[11, 12]) as

B1 B2 B3 · · · Bn+2 B0 0 0 · · · 0

I 0 0 · · · 0 0 −I 0 · · · 0

p 0 I 0 · · · 0 + 0 0 −I · · · 0 Q
G
G

G

G

G

F

f

G
G

G

G

G

K

k

G
G

G

G

G

L

l

G
G

G

G

G

K

k

G
G

G

G

G

L

l

G
G

G

G

G

J

j
···

···
···

···
···

···
···

···
···

···
0 0 · · · I 0 0 0 0 · · · −I

0

0G
G

G

K

k

G
G

G

L

l

= ···
, (14)

0

or in abbreviated form,

(pA
 +B
 )Q
 =0,

where the jth eigenvector will be

Xj

pjXj

Q
 j = p2
j Xj , j=1, m(n+2).G

G

G

G

G

K

k

G
G

G

G

G

L

l

···
pn+1

j Xj
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The matrix coefficient Bn+2 =M and other coefficients can be readily evaluated.
For example, for the Kelvin–Voigt model (n=1 in equation (4)), i.e., for the
relaxation kernel G(t− t)= a1 e−a1(t− t), these matrix coefficients are

B0 =K(a1 − a1), B1 =Ca1 +K, B2 =Ma1 +C, B3 =M. (15)

For the case n=2, i.e., for the relaxation kernel G(t− t)= a1 e−a1(t− t) + a2 e−a2(t− t):

B0 = (a1a2 − a1a2 − a2a1)K, B1 = a1a2C+(a1 + a2 − a1 − a2)K,

B2 = a1a2M+K+(a1 + a2)C, B3 = (a1 + a2)M+C, B4 =M.

For the case n=3:

B0 = (a1a2a3 − a1a2a3 − a2a1a3 − a3a1a2)K,

B1 = a1a2a3C+(a1a2 + a1a3 + a2a3 − a1(a2 + a3)− a2(a1 + a3)− a3(a1 + a2))K,

B2 = a1a2a3M+(a1a2 + a1a3 + a2a3)C−(a1 + a2 + a3)K,

B3 = (a1a2 + a1a3 + a2a3)M+(a1 + a2 + a3)C+K,

B4 = (a1 + a2 + a3)M+C, B5 =M.

A system of linear m(n+2) equations with respect to m(n+2) unknowns cj was
formulated in references [11, 12]. In matrix form, this system can be written as

a1

p1 + a1
X1

a1

p2 + a1
X2 · · ·

a1

pm(n+2)+ a1

Xm(n+2)

···
···

···
··· c1

G
G

G

G

G

G

G

K

k

G
G

G

G

G

G

G

L

l

G
G

G

K

k

G
G

G

L

l

an

p1 + an
X1

an

p2 + an
X2 · · ·

an

pm(n+2)+ an

Xm(n+2)
···

X1 X2 · · · Xm(n+2) cm(n+2)

p1X1 p2X2 · · · pm(n+2)Xm(n+2)

0

· · ·

= 0 (16)G
G

G

G

G

K

k

G
G

G

G

G

L

l

X0

X� 0

The basic part Xj of the eigenvector Q
 j is used in equations (16) and (13).

Remark 1. Note a principal difference between the solution of equation (9) and
the solution of the equation

Y� =GY, (17)
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where G is a constant 2m×2m matrix. For the latter equation, assuming the
existence of 2m linear independent eigenvectors, the solution can be expressed as

Y(t)= s
2m

j=1

djYj ejj t, (18)

where the coefficients dj are arbitrary and jj are, in general, complex eigenvalues.
Each exponential term djYj ejj t in equation (18) is a solution of equation (17).
However, in the case of equation (9), the coefficients cj , j=1, m(n+2) in the
solution

Zd(t)= s
m(n+2)

j=1

cjXj epj t (19)

should satisfy system (16). It is clear that if, for instance, ck $ 0 and all the rest
cj =0 ( j=1, m(n+2), j$ k), then the system (16) may not be satisfied regardless
of the initial conditions. Namely, the upper portion (where the right side has 0
components) may be violated.

In other words, the solution of equation (9) in the form (19) does not imply that,
in general, each exponential term of equation (19) is separately a solution of
equation (9). Note also that each independent solution Zi (ith column of matrix
Z(t)) may contain, in general, several exponential terms.

Remark 2. When the forcing function F(t) is such that the convolution integral
in equation (10) allows for analytical evaluation, then the whole solution (10) will
be analytical. In other cases, numerical evaluation of the integral is required.

Before proceeding with the presentation of numerical results, the method for
obtaining homogeneous solutions is extended to the case when Poisson’s ratio is
considered as a viscoelastic operator and the structure may consist of different
materials.

2.1. Homogeneous solutions when Poisson’s ratio is not constant
The finite element method yields a mass matrix of the system M and an elastic

stiffness matrix K. The derivation of the system stiffness matrix starts with an
element stiffness matrix, where the constitutive law is involved. For a linear elastic
material and 3-D stress–strain state:

[s]= [E][e],

where

[s]= [s11 s22 s33 s12 s13 s23]T, [e]= [e11 e22 e33 e12 e13 e23]T,

l+2G l l 0 0 0

l l+2G l 0 0 0

[E]=
l l l+2G 0 0 0

.G
G

G

G

G

G

G

K

k

G
G

G

G

G

G

G

L

l

0 0 0 2G 0 0

0 0 0 0 2G 0

0 0 0 0 0 2G
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where

l= nE/((1+ n)(1−2n)), 2G=E/(1+ n). (20)

One notices that matrix [E] assumes the form

1 1 1 0 0 0

1 1 1 0 0 0

[E]= lI1 +2GI, with I1 =
1 1 1 0 0 0

,G
G

G

G

G

K

k

G
G

G

G

G

L

l

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

and I a unit matrix. Therefore, the stiffness matrix of a structure consisting of one
homogeneous material can be represented as

K= lK1 +2GK2,

The hereditary analog of this matrix is obtained by replacement of E, n by
corresponding operators, i.e., E:E	 , n:ñ, or by another replacement l:l	 , G:G	 .

Viscoelastic Lamé operators l	 and G	 are assumed in the form

l	 y(t)= l0y(t)−g
t

0

s
n

i=1

ai e−ai (t− t)y(t) dt1,
G	 y(t)=G0y(t)−g

t

0

s
n

i=1

bi e−gi (t− t)y(t) dt1. (21, 22)

If the expressions for operators E	 and ñ are known, then the Lamé operators can
be calculated by using operator multiplication and division rules [2], and formulas
(20).

Now, the equation of free motion can be written in the form

MX� +CX� +(l	 K1 +2G	 K2)X=0. (23)

The solution of equation (23) is sought in the form

X(t)= s
m(2n+2)

j=1

cjXj epj t, (24)

where Xj is a complex vector (m×1); cj , pj are complex, m is the number of degrees
of freedom, and n is the number of exponential terms in equations (21) and (22).
Note that the number of exponential terms in solution (24) is taken for this case
as m(2n+2) in comparison with m(n+2) in equations (13) when only Young’s
modulus was considered as a viscoelastic operator.
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Denoting N=m(2n+2) and substituting equation (24) into equation (23),
using equations (21) and (22), one obtains

s
N

j=1 $p2
j M+ pjC+ lK101− s

n

i=1

ai

pj + ai1+2GK201− s
n

i=1

bi

pj + gi1%cjXj epj t

+ s
n

i=1 $lK1 s
N

j=1

ai

pj + ai
cjXj% e−ai t + s

n

i=1 $2GK2 s
N

j=1

bi

pj + gi
cjXj% e−gi t =0.

Therefore the following equations need to be satisfied.

$p2
j M+ pjC+ lK101− s

n

i=1

ai

pj + ai1+2GK201− s
n

i=1

bi

pj + gi1%Xj =0, j=1, N.

(25)

Relations (25) generate an eigenvalue problem analogous to equation (14).
Also, the following terms should be set to zero:

s
N

j=1

ai

pj + ai
cjXj =0, i=1, n (26)

and

s
N

j=1

bi

pj + gi
cjXj =0, i=1, n. (27)

Relations (26) and (27) and the initial conditions constitute a system of
N=m(2n+2) linear equations with respect to N unknowns cj analogous to
equation (16):

a1

p1 + a1
X1

a1

p2 + a1
X2 · · ·

a1

pN + a1
XN

b1

p1 + g1
X1

b1

p2 + g1
X2 · · ·

b1

pN + g1
XN 0

···
···

···
··· c1 · · ·

an

p1 + an
X1

an

p2 + an
X2 · · ·

an

pN + an
XN

··· = 0 .G
G

G

K

k

G
G

G

L

l

G
G

G

G

G

G

G

K

k

G
G

G

G

G

G

G

L

l

bn

p1 + gn
X1

bn

p2 + gn
X2 · · ·

bn

pN + gn
XN cN X0

X1 X2 · · · XN X� 0

p1X1 p2X2 · · · pNXN

Having found cj , j=1, m(2n+2), the homogeneous solution (24) is found.

K L
G G
G G
G G
G G
G G
G G
G G
G G
G G
G G
G G
k l



1 2 3 4 5 6 7

f (t)

Y

X

Z
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Note that extension of this method to the case of inhomogeneous structures is
accomplished in a straightforward way, i.e., by representing the system stiffness
matrix operator as

K	 = s
L

j=1

(l	 jK1j +2G	 jK2j ),

where L is the number of homogeneous substructures. Then, the solution is sought
in the form

X(t)= s
m(2L× n+2)

j=1

cjXj epj t, (28)

where n is the number of exponentials in the relaxation kernels of operators l	 j ,
G	 j ; m is the number of degrees of freedom (size of matrices M, C, K1j , K2j ,
j=1, L). Note that the number of exponential terms in solution (28) is taken for
this case as m(2L× n+2) in comparison with m(2n+2) in equation (24) when
one homogeneous component constituted the whole system. The formulation of
an eigenvalue problem analogous to equation (14) and a system analogous to
equation (16) then follow. Thus, an analytical homogeneous solution in the form
(28) can be found for the case of inhomogeneous structures and when two
parameters in the constitutive law are considered as operators: Young’s modulus
and Poisson’s ratio, or two Lamé operators. This solution can then be used in
equation (10) to construct the general solution.

Remark. In the case of an inhomogeneous structure consisting of L components
with only Young’s moduli introduced as operators, the homogeneous solution is
sought in the form

X(t)= s
m(L× n+2)

j=1

cjXj epj t. (29)

Note that the number of exponential terms in the solution (29) is taken for this
case as m(L× n+2) in comparison with m(2L× n+2) in equation (28) when
two Lamé operators were introduced.

Figure 1. Viscoelastic beam with fixed ends.
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Figure 2. Forced vibration response to step-loading with a1 =95 s−1; a1 =100 s−1. Key for
Y-displacements: –.–., node 2; -----, node 3; ——, node 4.

3.     

A program was written which calculates analytical homogeneous and forced
vibration solutions according to the above described procedure.

The purpose of this section is to show practical feasibility of the procedure and
to provide an example (with all the necessary input data) which can be used for
comparison purposes by other researchers.

Numerical results are presented for a viscoelastic homogeneous beam with fixed
ends (Figure 1). The parameters of the beam’s cross section were 0·01×0·01 m,
the beam’s length was 0·12 m, the instantaneous Young’s modulus E was
0·15E+08 Pa, Poisson’s ratio was assumed constant as n=0·3, and the density
of the material was 0·141E+04 kg/m3. The beam was meshed by 6 general
(Timoshenko’s type) beam elements. Each node of a beam element had 6 degrees
of freedom (3 linear and 3 rotational). Thus, the size of the problem (number of
unconstrained degrees of freedom) was m=30.

The relaxation kernel in equation (4) was assumed as

G(t− t)= a1 e−a1(t− t), (30)

which corresponds to the Kelvin–Voigt model. The matrix coefficients Bi in
equation (14) for this case (n=1) were computed by equation (15). To investigate
the effect of the hereditary part in equation (5), and not its combined effect with
the viscous damping term CX� , it was assumed that the damping matrix C=0.

The size of the eigenvalue problem (14) and of the system (16) was
m(n+2)=30*(1+2)=90. Subroutine ‘‘DREIGN’’ [14] was used for eigenprob-
lem (14) and subroutine ‘‘CDSOLN’’ for equation (16).

A vertical force f(t) was applied at node 4 (Figure 1). At first, a step-type loading
was considered (units N):

f(t)=60,
1,

tQ 0
tW[0, a)7.
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Figure 3. Overdamped region.

Note that for this case the convolution integral in equation (10) allows for an
analytical evaluation.

In the first example, the values of the parameters in equation (30) were
a1 =95 s−1 and a1 =100 s−1. The ratio of the long-time modulus Ea to the
instantaneous modulus E for this case was [2] Ea/E=1− a1/a1 =0·05.

The numerical results in terms of the displacements are presented in Figure 2,
where the graphs with numbers 2, 3 and 4 correspond to Y displacements of nodes
2, 3 and 4, respectively. All degrees of freedom had zero initial conditions. One
can see the oscillatory character of the response at the initial stage. The motion
was created mostly by the 1st free vibration mode.

The first natural frequency of the undamped beam in Figure 1 (if the hereditary
term was set to zero) was 73·38 Hz, of l=461·09 s−1. Using the results from
reference [15], where a single-degree-of-freedom (SDOF) system was analyzed, one
can provide an overdamped response if the point (a1/l; a1/l) is put into the

Figure 4. Forced vibration response to step-loading with a1 =950 s−1; a1 =1000 s−1. Key as for
Figure 2.
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Figure 5. Forcing function: D-shape loading.

overdamped region. This region was built in reference [15] and is shown in Figure
3 by the arrow. Assuming that the forced response was mostly created by the first
mode (for our example), one can use analogy with a SDOF system. Thus, one can
prescribe values for a1 and a1 in such a way that a non-oscillatory (overdamped)
character is achieved. Namely, the following values were prescribed: a1 =950 s−1

and a1 =1000 s−1. Note that the point (a1/l=1000/461·09=2·169; a1/l=950/
461·09=2·06) belongs to the overdamped region (Figure 3). As expected, the
response for this case was non-oscillatory. It is shown in Figure 4.

As next example, a D-shape forcing function f(t) (Figure 5) was considered.
Note that, for this type of loading, the convolution integral in equation (10) also
allows for analytical evaluation, namely, one can subdivide the interval of
integration in the convolution terms in three subintervals: [0, t1], [t1, t2] and [t2, a).
Then, the following formulae are useful for the evaluation of the convolution term:

g
t

0

ep(t− t)f(t) dt=g
t

0

ep(t− t)gt dt= g ept g
t

0

e−ptt dt

=
−g(pt+1−ept)

p2 , tW[0, t1];

g
t

0

ep(t− t)f(t) dt= g ept g
t1

0

e−ptt dt+ept g
t

t1

e−pt(bt+ r) dt, tW[t1, t2];

g
t

0

ep(t− t)f(t) dt= g ept g
t1

0

e−ptt dt+ept g
t2

t1

e−pt(bt+ r) dt, tW[t2, a];

where g, b, and r are constant coefficients. Recall that f(t)=0 for tq t2.
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Figure 6. Forced vibration response to D-shape loading with a1 =95 s−1; a1 =100 s−1. Key as for
Figure 2.

The forced vibration response for this case of loading is presented in Figure 6
for a1 =95 s−1, a1 =100 s−1. All degrees of freedom had zero initial conditions.
One can see the oscillatory character of the response. Again the motion is created
mostly by the first free vibration mode.

The forced vibration response for a1 =950 s−1, a1 =1000 s−1 is shown in Figure
7. The response for this case was overdamped.

The last example was produced for values a1 =750 s−1 and a1 =1000 s−1. It is
shown in Figure 8. Again, one can see the oscillatory character of the response.
Note that, in this case, the ratio a1/l was 1·626 and the point (a1/l; a1/l)= (2·169,
1·626) was outside of the overdamped region.

4. 

A procedure for obtaining the forced vibration response to an arbitrary forced
excitation for discrete viscoelastic structures has been shown for the case when the

Figure 7. Forced vibration response to D-shape loading with a1 =950 s−1; a1 =1000 s−1. Key as
for Figure 2..
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Figure 8. Forced vibration response to D-shape loading with a1 =750 s−1; a1 =1000 s−1. Key as
for Figure 2.

relaxation kernels in the constitutive relation are represented as a series of
exponentials.

The procedure employs a convolution integral which yields the particular
solution to the problem. The homogeneous term has been obtained in analytical
form for the case of an inhomogeneous structure with Poisson’s ratio and Young’s
modulus considered as viscoelastic operators.

The general solution is obtained in the time domain without the necessity to
apply Laplace transforms or numerical integration for the equation of motion. For
some types of the forcing function, an analytical expression for the convolution
integral can be obtained.
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